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Abstract: We advocate the study of graph models for complex networks based on kernel functions over metric spaces. These

are hybrids between: (a)macroscopic random graph models for complex networks (b)microscopic models that incorporate

network semantics, reminiscent of machine learning and information retrieval primitives. In particular, kernel-based models

assign explicit semantics to network nodes and links. These semantics can capture fundumental properties, such as hierarchy

and clustering; the latter arise repeatedly in real complex networks, but they do not arise in pure random graphs. At the

same time, kernel-based models maintain the conceptual, analytical and implementational clarity of random graph models.

1 Introduction

Complex networks arise naturally in societies, economies and technologies. In recent years, the study of
complex networks has intensified, due to the dramatic growth of the WWW, the continuous emergence
of novel network applications running over the WWW, and the capability of current technology to collect
and store data arising from complex networks. Models for complex networks are fundamental for net-
work understanding, prediction and simulation. Such models should be consistent with general network
characteristics. In addition, such models should capture further detailed network characteristics that are
important to the particular application. These further characteristics may vary substantially accross differ-
ent applications. If the application calls for repeated generation of synthetic network instances (as would
typically be the case, for example, in scaling studies), it is also important that instances can be generated
very efficiently.

Two nearly universally obseved characteristics of complex networks, namely heavy tailed degree dis-
tributions and the small world phenomenon, have given rise to network models vastly different from the
50 year old classical Erdös-Renyi random graphs [7]. At the same time, Kleinberg’s pioneering work on
navigability [10] pointed out that additional critical parameters should be involved in network studies; the
range of such parameters can determine network function.

The first generation of complex network models, developped by physicists, mathematicians, computer
scientists and economists [5, 2, 6, 14, 7, 9], can be broadly categorized as macroscopic and microscopic.
Macroscopic models are random graphs with skewed degree distributions and possessing the small world
property (we skip further studies characteristics from this short paper). The advantage of macroscopic
models is conceptual simplicity, amenability to mathematical analysis, and relatively efficient algorithms
generating synthetic network instances. Their disadvantage is that they are missing network semantics.
Consequently, such models have been noted to fail, especially in cases where network elements have explicit
additional semantics.

Two fundamental cases where macroscopic random graph models have been noted to fail involve
hierarchy and clustering. These notions have immediate intuitive understanding and invoke semantics
explicitly. Hierarchy speaks of distinct classes of significance. Clustering speaks of distinct preferences in
forming associations. Local clustering involves local preferences, such as “the friend of my friend is more
likely to be my friend”. Global clustering involves very well connected communities, indicating collective
and very specific common interests. It has been noted extensively that pure random graph models fail to
captute both hierarchy and clustering [13, 12, 11, 8]. And yet, for every application involving a complex
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network where hierarchy and/or clustering is present, it is particularly important that a corresponding
network model should capture this property.

Kernel random graphs is a new genre of complex models, which endows usual random graphs with
semantics on their nodes and their links. The significance of kernel random graphs is that nodes and
links have semantics. Node semantics are expressed by representing nodes as vectors in high dimenstional
spaces. These nodes are distributed according do a distribution µ. The links of the graph are determined
by the the semantics of nodes at the endpoint of each link. In particular way by which node semantics
determine how (with what probability) each pair of nodes is connected with a link, is expressed by a
so-called kernel function κ, hence the name of the model. Kernel random graphs become powerful when
properties of the generated graphs can be well characterized in terms of the new ”parameters” µ and κ.
The aim is to capture classes of µ’s and κ’s which provably result in properties that are observed in real
complex networks. In Section 2 we describe kernel random graphs more formally, and report recent results
suggesting that they are amenable to analysis. In Sections 3 and 4 we outline the potential of kernel
random graphs to capture hierarchy and clustering.

2 Random Graph Models based on Kernel Functions

The Model Gκ,g
µ (n)

Kernel random graphs is a new genre of complex network models, which endows usual random graphs with
semantics on their nodes and their links [3, 4]. For any given number of network nodes n, a kernel random
graph model generates a graph on n nodes.

Semantics on nodes are captured by representing nodes as vectors in d-dimensional space, one dimension
for each relevant node attribute. For example, think of each attribute as a distinct characteristic, or interest.
Each network node is determined by its values on each attribute (extend of characteristic, amount of
interest). d is fixed and independent of n. From the application point of view, d being fixed is a reasonable
starting point. Each node can be though of as a local entity with limited resources, independent of the size
of the entire population. Kernel random graphs have been defined for more general metric spaces in [3],
but in this short paper we restrict the exposition to d-dimensional space.

Nodes are sampled from a fixed, bounded but otherwise general distribution µ ∈ �d. The generality of
µ can capture a wide range of statistical behaviors. The condition that µ is bounded is entirely reasonable.
It says that, for each network node, the total sum of the values of the node on each attribute is bounded.
Clearly, a node with bounded resources cannot keep track of of ever growing levels of characteristics or
interests. The condition that µ is fixed and independent of n is very strong. It says that, statistically, the
overall distribution of emantical characteristics of nodes does not change. On the other hand, we know
that, even in networks with bounded local resources, there exist local network dynamics that can change
the distribution of network node characteristics over time or as the network grows. In the end of Section 4
we shall see a case where the condition on µ is relaxed.

Semantics on links are captured by a kernel function κ, which maps pairs of nodes to the probability
that they form a link. The conditions on κ are very mild and entirely natural (should be continious almost
everywhere). Finally, we have a function g =g(n) to control the density (average degree, or total number
of links) of the generated graph.

A kernel random graph can be then generated as follows: the nodes are generated according to µ and
they are d-dim vectors �xi, 1 ≤ i ≤ n. A link between each pair of nodes �xi and �xj is added with probability
proportional to κ(�xi, �xj)/g(n). We call the class of random graphs, determined by µ, κ, g and n, Gκ,g

µ (n),
In addition to introducing semantics, realize another advantage of kernel random graph models: they

explicitly separate the issue of inferring µ and κ, from the issue of characterizing the structural and
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functional properties of Gκ,g
µ (n). The former is the object of statistical inferencing and learning theory,

while the latter is the object of graph theory. Clearly, web science should involve statistical inferencing,
learning theory and graph theory.

In particular, for graph theory and web science, the question then becomes: What functions µ and
κ give rise to well characterized classes of graphs Gκ,g

µ (n)? We stress that µ and κ are the new random
graph “parameters”. They are the precise parameters capturing network semantics. Therefore, properties
of Gκ,g

µ (n) should be explicitly invoking µ and κ.

Analytical Results for Gκ,g
µ (n)

Towards chacterizing properties of Gκ,g
µ (n) for general classes and in terms of µ and κ, there are two

independent lines of work with positive results: (1)Bollobás et al [3] showed that essentially all known sparse
inhomogenious random graph models (heavy tailed degree distributions but constant average degree) can
be expressed in terms of suitably chosen µ and κ (and more general technical metric spaces). In addition,
for sparse Gκ,g

µ (n), [3] obtain structural characteristics in terms of µ and κ, for fairly general µ and κ,
and under mild assumptions. The main point of [3] is technical and very strong: they demonstrate that
mathematical methods previously used for Erdös-Renyi random graphs carry over to much more general
classes of graphs. (2)Young and collaborators [17] studied the case where κ is the inner product function.
Realize that the inner product is a very natural way to capture similarity. It is used to express similarity
throughout machine learning [16, 15]. For G<·,·>,g

µ (n) with average degree ranging from Ω(log n) to O(n),
and under no assumptions, [17] express diameter, degree distribution and clustering explicitly and in closed
form in terms of µ. They also show that suitable µ’s can capture all three hallmarks of complex networks:
skewed degrees, low diameter, and local clustering.

Another important advantage of Gκ,g
µ (n) is that it easy to simulate. In most cases, each vector xi can

be generated from µ in time O(log n), and the links �xi ∼ �xj require, in the worst case, O(n2) experiments;
the latter can be greatly improved in many specific cases (e.g. inner product graphs can be generated
intimeproportional to their size, which is optimal). Finally, for many classes of κ, including the inner
product, a graph over n nodes Gκ,g

µ (n) can be made to evolve naturally and very efficiently to a graph over
N nodes G<·,·>,g

µ (N), for N >> n.

3 The Case of Hierarchy

Hierarchy is rather well understood intiutively, and is therefore invoked often in network studies. For
networks with heavy tailed statistics, hierarchy has been captured by a quantity called “assortativity” [13,
12]. Assortativity involves the sum

∑
u∼v dudv, that is, the sum, over all network links u ∼ v, of the product

of the degrees of the nodes u and v. In random graphs, high degree nodes tend to connect to other high
degree nodes, and appear to be at the center of the network; in such networks the assortativity

∑
u∼v dudv is

large. On the other hand, there are technological networks, such as the intranet of big ISP providers, where
nodes are routers with vastly different bandwidths. As expected, high bandwith routers are placed at the
center of the network, and are interconnected in relatively sparse regular patterns. At the same time, very
high degree nodes correspond to much lower bandwidth routers which split the signal manyways towards the
end users at the network periphery. In networking, this is characterized as hierarchy, and the assortativity
∑

u∼v dudv is small. Microscopic models have tried to capture the case of networks with small assortativity
by expressing network formation as the result of cost-benefit optimization [12]. As expected, these models
are successful for the particular applications. However, the involved combinatorial optimization problems
are notoriously hard, and do not scale. Quite interestingly, small assortativity has been also observed
in the human gene-protein interaction network, while, for example, the yeast gene-protein interaction
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network has much larger assortativity [13, 8]. It appears very unlikely that any process involving cost-
benefit combinatorial optimization will capture or distinguish gene-protein interaction networks. Indeed,
the only known processes driving the evolution of such networks are population statistics and probabilistic
primitives invoked in natural selection. We therefore prefer to have general macroscopic random models,
with additional parameters.

Recently, Amanatidis and Mihail [1] developped hierarchical networks, including the case of small
assortativity, low degree routers in the core and high degree routers in the periphery, as manifested in net-
working [12], in Gκ,g

µ (n). They used 3-dimensional space. Two dimensions reprent geographic coordinates,
as usual. The third dimension explicitly respresents router bandwidth (small, medium or large). Heavy
tailed statistics follow by suitable choice of µ: Small bandwidth routers are distributed according to heavy
tailed probability distributions in geographic coordinates, as would be the case of end-users. Medium and
large routers are distributed uniformly. The kernel function dictates that routers are connected according
to hierarchy and geography, with hierarchy assuming precedence.

4 The Case of Clustering

The second case of discrepancy of random graph models from data arising in real complex networks concerns
the case of local or global clustering.

Local clustering is the property that Pr(u ∼ v|u ∼ x, v ∼ x) > Pr(u ∼ v). This property is observed
in nearly all real complex networks, and nearly no pure random graph models. For G<·,·>,g

µ (n), Young [17]
derived a closed formula for Pr(u ∼ v|u ∼ x, v ∼ x) − Pr(u ∼ v), explicitly in terms of properties µ. He
showed positive clustering in all cases, except when µ is concentrated in a single point (pure Erdös-Renyi
graphs).

Global clustering concerns the existence of much deeper or sparser cuts in real complex networks (much
better intraconnected communities), as compared to random graphs [11]. Moreover, the few sparse cuts
that occur in random graphs involve small number of nodes. Real complex networks appear to have sparse
cuts with substantially larger number of nodes (stronger communities, of bigger size). Mathematically, cut
sparsity is measured by a quantity φ called “conductance”. Deep, or sparse cuts correspond to subsets
involving k = k(n) nodes, and conductance Φ(k, n). In pure random graphs on n nodes, all cuts have
conductunce much larger than, roughly, 1/log n. In fact, the only cuts that have conductance close to
1/log n involve no more than, roughly log n nodes. If Φ(k, n) is known, then it is very interesting to explore
how sparse cuts with desired conductance and explicit semantics can be generated in Gκ,g

µ (n), if we allow
µ and κ to depend on n [4]. It also very interesting to explore what is the precise nature of Φ(k, n) in [11],
and what are the semantics µ of the corresponding cuts. We shall report results in this direction in the
full paper.
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